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Abstract

Players can sometimes engage with parts of a video game
that they do not enjoy if the game does not try to adapt the
experience to the player’s preference. AI directors have been
used in the past to tailor player experience to different peo-
ple. In industry, AI directors are relatively uncommon and are
typically domain-specific and rules-based. In this paper, we
present a reinforcement learning-based AI director developed
for the industry game Nightingale with the help of Inflexion
Games. We ran an experiment to evaluate the effectiveness
of the AI director in creating a desired player experience, but
found inconclusive evidence. In line with this year’s theme,
we present our negative results and their implications for fu-
ture AI directors, along with general discussion from working
closely with an industry partner.

1 Introduction
An AI director is an agent in a video game that attempts to
improve a player’s experience by changing aspects of the
game. For example, in the game Left 4 Dead (Valve 2008),
an AI director can alter enemy spawns, item placements and
other elements in an attempt to have players experience a de-
sired tension curve (Booth 2009). There has been significant
academic interest in AI directors (Thue 2007a,b; Harrison
and Roberts 2014; Khaliq and Watson 2018; Spronck et al.
2006; Jennings-Teats, Smith, and Wardrip-Fruin 2010), but
these systems are not implemented in industry games, mak-
ing it difficult to analyze them in their intended application.
Further, it’s rare to see industry developers discuss the AI
directors they implement in detail (Thompson 2014).

In this paper we propose a reinforcement learning (RL)
based AI director intended to reward players for engaging
with content they prefer. To help evaluate this AI director,
we partnered with a video game studio, Inflexion Games,
and implemented the AI director in their upcoming game
Nightingale. The AI director was evaluated in a human sub-
ject experiment with over 200 participants capturing both
quantitative and qualitative data. The results from this exper-
iment were inconclusive, but still offer some insights. Given
AIIDE 2022’s theme of mis-spun tales, the results of this
experiment are submitted as negative results. We cover our
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experimental results and the experience of working with our
industry partner, and the takeaways learned from both.

This paper contains two primary contributions. The first
contribution is an interpretation of our negative results. The
RL AI director failed to outperform a random AI director in
all metrics. We offer potential explanations, such as a mis-
match between the AI director design assumptions and the
game that was played, as well as other analysis relevant to
future AI director research. The second contribution is from
the experience of collaborating closely with an industry part-
ner, which includes direction on when it is appropriate to
include academic research in the development cycle in the
game, and other practical considerations.

2 Background
AI directors are used to influence the state of a video game in
various ways. In academia, AI directors fall into the category
of generalized experience management (GEM), which mod-
els the problem as a Markov decision process (MDP) where
the AI director maximizes some reward (Thue 2010). Some
common problems are adjusting the difficulty to a player’s
skill level (Jennings-Teats, Smith, and Wardrip-Fruin 2010;
Tychsen, Tosca, and Brolund 2006), and adjusting the narra-
tive to suit the player’s preferences (Riedl and Young 2010;
Thue 2007a; Giannatos et al. 2011; Yu and Riedl 2013;
Khaliq and Watson 2018).

There are some AI directors that have explored simi-
lar settings to ours. PaSSAGE is an AI director that deter-
mines player preferences through player actions and chooses
which branch of narrative based on those preferences (Thue
2007a,b), but its effectiveness was inconclusive for a gen-
eralized population of players. Harrison and Roberts devel-
oped an analytics-driven AI director that models the game
state in order to choose which quests to present the player
(Harrison and Roberts 2014). This AI director showed an
increase in player retention, but lacked any qualitative dis-
cussion for how players perceived the adaptive experience.
The Omni framework was proposed as a way to dynamically
generate suitable quests based off game state, player state,
and other information (Khaliq and Watson 2018), but lacks
any experimental results for the performance of the system.

To support an AI director that provides quests, a cursory
understanding of video game quest theory is necessary. We
used a general, technical quest definition defined as Q =



Figure 1: Boxes indicate locations, and arrows indicate how
a player was allowed to transition between locations.

Figure 2: A screenshot of the job board that the players
needed to interact with in order to accept and submit quests.

⟨T,≤, R, d(R)⟩ where T is a set of tasks for the player to
complete, and R is the set of rewards (Yu, Sturtevant, and
Guzdial 2020; Yu, Guzdial, and Sturtevant 2021). These are
the most relevant pieces of the quest definition, and a full
discussion lies outside the scope of this paper.

3 Nightingale the Game
Inflexion Games is currently working on a game that is
scheduled for early access release. When this research was
conducted, Inflexion Games was producing the game as a
massive multiplayer online role-playing game (McKeand
2022).

In the game, players engaged with a variety of locations
and gameplay. Players started their adventure in Nightin-
gale City, where players interacted with NPCs to progress.
A specific area called the “cardinal realm” was connected
to the city, where players engaged with the main part of the
game. Players could build houses, hunt wildlife, harvest re-
sources, and craft items. Players looking for additional ac-
tivities could go to a “temporal realm”, which was an area
that featured content not found in the “cardinal” realm.

3.1 Nightingale Game Loop
The main game loop is shown in Figure 1. In order to
progress through the game, players needed to unlock new
abilities using experience points, and players completed
quests to gain experience points. Players accepted Quests at
job boards in both the “cardinal” and “temporal” realms.

The AI director was deployed in the job board, which
was stationed at the entrance to each realm, and was a crit-
ical part of the main game loop. When a player interacted
with the job board, they were presented with three quests,
as shown in Figure 2. Players used three actions to interact

Quest Type Example Quest

Build Build 6 Shack Foundation Structures
Craft Craft 1 Crude Axepick
Kill Kill 5 Wolves
Acquire Acquire 10 Common Iron Ore

Table 1: Example quests that players could complete

with quests: accept, submit, and abandon. Accept was when
a player chose to complete that quest, submit was when a
player turned in a completed quest for the reward, and aban-
don was when a player chose to stop attempting to complete
an already accepted quest. Players were allowed to accept
and submit quests when they interacted with the job board,
but could abandon quests at any time. Every time a player
interacted with the job board, they were shown a new set of
quests selected by a particular algorithm. The board could
be opened and closed in succession if players were looking
for different quests, and players could accept a maximum of
five quests at any given time.

3.2 Quests in Nightingale

Quests were designed such that each one had exactly one
task. There were four different types of gameplay: build,
craft, kill, and acquire, which represent the four quest types.
Each quest of a particular type required taking the action
associated with that gameplay. Table 1 shows an example
of quests for each type. The number of quests was approx-
imately balanced between quest types. The game had 33
build quests, 22 craft quests, 27 kill quests, and 19 acquire
quests.

4 AI Director Design

The concept for the AI director was originally proposed by
designers at Inflexion Games. They wanted to include a ma-
chine learning driven AI director because they believed that
these techniques could be used to improve player experi-
ence. Because the AI director was internally approved be-
fore searching for outside, academic help, the studio planned
for the incorporation of the technology, and decided the best
time for integration. The AI director was designed with two
goals: identify the gameplay types that players prefer to pro-
vide them with more quests of that type, and support players
who create their own goals using quest rewards. The AI di-
rector was intended to shape the player experience by chang-
ing the types of presented quests.

The design also made two fundamental assumptions.
First, the AI director assumed that each quest was of equal
quality, such that the only difference between quests was
type. Second, the AI director assumed that it would be in
the final version of the game, rather than the version of the
game that was played in the playtest. The second assumption
is a possible explanation for some of the negative results we
discuss later in the paper.



4.1 Combinatorial Multi-Armed Bandit
Algorithm

The proposed problem space of the AI director naturally
lends itself to be modeled as an RL problem using the GEM
framework (Thue 2010). Each player has a preference for
different quest types, which can be learned using RL. The
reward signal for this problem is whether the quests were ac-
cepted or not. We simplified the problem model to a single
state in order to model the AI director as a bandit problem,
as suggested by Sutton and Barto 2020. All possible player
states are simplified to one state and the arms are the quests
that are presented to the player.

To learn the player preference over the quest types,
we used a combinatorial multi-armed bandit algorithm
(CMAB). CMABs are a class of RL algorithms that reward
sets of arms, called superarms, in order to learn a distribution
(Chen, Wang, and Yuan 2013; Ontanon 2013). This section
describes ideas used by CMAB as a whole, and the follow-
ing section will discuss the specific application of CMAB
for the AI director. Let m be the number of arms, and t
be time. Each arm is associated with a random variable
Xt(i) for 1 ≤ i ≤ m and t ≥ 1. Xt(i) denotes the out-
come of each arm, which is the result of choosing arm i at
time t. Each variable Xt(i) is iid with expected mean µi.
µ = {µ1, µ2, ...µm} is the expected mean of all arms. S is
the set of all super arms, and is the power set of all possible
combinations of arms in m. |S| = 2|m| − 1 to excludes the
empty set. A single super arm S ∈ S is played in a round,
and the outcomes for the set of arms in S are revealed. A re-
ward Rt(S) is given to each arms i ∈ S. Nt(i) is the number
of times arm i has been played up to time t.

In the selection of a superarm, the CMAB attempts to
maximize reward. Let Rt be reward at time t, and Qt be
the action value of a superarm. In our application, we use
CMAB to learn the action value of each super arm S ac-
cording to Qt+1(S) = Qt(S) + α(Rt(S) − Qt(S)) (Sut-
ton and Barto 2020). A superarm is selected according to
the upper confidence bound (UCB) algorithm, where St =

argmaxs(Qt(S)+c
√

ln(t)
Nt(S) ) (Auer, Cesa-Bianchi, and Fis-

cher 2002).

4.2 Quest Selection
In this section we describe the specific case of the CMAB
used by the AI director to select quests. To do so, each arm
and superarm need to be defined. Let q represent a single
quest, P represent a quest proposal, and n represent the to-
tal number of unique quests in a game. A quest proposal P
is a set of k quests, and is the set of quests that is simulta-
neously shown to the player. P = {q1, q2, ...qk}. Each quest
in a proposal is unique. Let P be the set of all quest propos-
als. Because of UI constraints, we propose exactly k quests
to the player. ∀P ∈ P, |P | = k. P can be generated by
calculating all unique combination of quests.

Instead of using each quest as an arm and proposals as a
superarm, we use an abstraction to create arms and super-
arms to reduce the computational complexity. We explain
this decision in more detail later in the section. We use the
abstraction of quest type, based on the recommendation of

designers at Inflexion Games. Let τ be a quest type, and let
T be the set of all quest types. In Nightingale, T is {craft,
build, kill, acquire}. Let f : q → τ be a function which in-
puts a quest q and outputs the type of that quest τ ∈ T, and
is many-to-one in order to be effective at reducing the size of
P. Let f(P ) be the set of τ such that ∀ q ∈ P , f is applied,
as shown in Equation 1.

f(P ) = {f(q1), f(q2), ...f(qk)} = {τ1, τ2, ...τk} (1)

f is many-to-one, which causes some quest proposals P
to contain the same set of quest types f(P ) after transforma-
tion. From Section 3, the AI director assumed that all quests
have equal quality, and the only difference between quests
is the quest type. Therefore, this loss of information is ac-
ceptable according to the AI director design. Let f (P) be the
set of all f(P ) where f is applied to every P in P. Each
proposal f(P ) maintains the same size k, but allows multi-
ple of the same quest type to be present in a single proposal
f(P ). f (P) can be calculated using combinations with rep-
etition. |f (P)| =

(|T|+k−1
k

)
. This set is smaller than the set

of unique quest proposals
(|(P)|=n

k

)
and is easier to compute.

This transformation provides a new basis for which to create
arms and superarms. Instead of using P as an arm and using
P to create superarms, we use f(P ) as an arm and f (P) to
create superarms.

Let S be a superarm, where each superarm is defined
based on similarity of quest types between arms. For exam-
ple, one superarm is the set of all f(P ) that contain at least
one crafting quest. Another superarm will be the set of all
f(P ) that contain at least one crafting quest and one acquir-
ing quest.

Next, the reward for the arms and superarms needs to be
defined. The reward for each arm depends on the outcome of
a quest proposal, which is not the arm. The outcome of P is
considered instead of the outcome of f(P ) because players
are shown P , not the abstracted version f(P ). Let Xt(P )
be the outcome of a quest proposal P at time t. Xt(P ) is
how many quests in proposal P that a player accepts at time
t. Xt(P ) ∈ {0, ..., k}. To calculate Xt(P ), an acceptance
function is needed which determines whether a particular
quest q ∈ P is accepted. Let gt : player, q → {0, 1} be
the acceptance function at time t which takes a player and a
quest as inputs and outputs a 0 if a player does not accept,
and 1 if a player accepts. gt is a function of a quest and not
a quest type because a quest is shown to the player, not the
quest type. Applying g to all q in P , and including the player
input, is shown in Equation 2.

gt(P ) = {gt(player, q1), gt(player, q2), ..., gt(player, qk)}
= {{0, 1}, {0, 1}, ...{0, 1}}

(2)
The value of Xt(P ) is calculated by summing the re-

sults from the acceptance function transformation. Xt(P ) =∑k
i=1 gt(player, qi). Xt(P ) can only be used as a reward

for the associated arm f(P ) where P was shown to the
player. In the algorithm described in Section 4.1, an entire



superarm is evaluated at a single time step. This is not pos-
sible in our domain because only one quest proposal can
be shown to the player at time t. Instead, the information
learned from Xt(P ) is generalized to the rest of the arms in
the superarm. Since the superarms were constructed based
on the quest proposal’s similarity to each other, we assume
similar quest proposals should have the same reward.

Each arm in a superarm is rewarded based on the simi-
larity of each arm to the quest proposal that was evaluated.
Let At(P ) be the acceptance set, where At(P ) = {τi ∈
f(P ) | gt(player, q) = 1}. At(P ) is the set of all quest types
that were accepted by the player. At(P ) can be calculated by
first applying gt to get the set of quests that were accepted by
the player, and then applying f to only the accepted quests
in P . At(P ) ⊆ f(P ). The powerset of At(P ) is used to
identify superarms to reward, denoted as P . For every set
a ∈ P(At(P )), a ̸= ∅, a identifies a superarm S if a is a
subset of every f(P ) in S. Let S be a superarm, P be a quest
proposal that is shown to the player, and f(P ) be the asso-
ciated arm. Let P ′ be a quest proposal that is not P , where
f(P ′) is not equal to f(P ), and P ′ is not shown to the player.
Let f(P ′) be in S. The reward Rt(f(P )) for f(P ) is Xt(P ).
The reward for all other arms f(P ′) in S are rewarded with
|a|. ∀f(P ′) ∈ S, f(P ′) ̸= f(P ), Rt(f(P

′)) = |a|. a re-
wards f(P ′) with a higher reward for a higher degree of
similarity between f(P ) and f(P ′), since |a| will be larger
when there are more quest types in common between f(P )
and f(P ′).

For example, let a quest proposal P = {Kill 10 deer,
kill 10 bears, build 5 walls, build 5 doors, acquire 10
logs}. f(P ) = {kill, kill, build, build, acquire}. gt(P )
= {1, 1, 0, 0, 1} at time t for some player. At(P ) =
{kill, kill, acquire}. There are 5 sets in the powerset of
At(P ) (not including the empty set): a1 = {kill}, a2 =
{kill, kill}, a3 = {acquire}, a4 = {kill, acquire}, a5 =
{kill, kill, acquire}. Therefore, f(P ) is part of five super-
arms: S1 where all arms have at least one kill quest as de-
fined by a1, S2 where all arms have at least two kill quests
as defined by a2, S3 where all arms have at least one acquire
quest as defined by a3, S4 where all arms have at least one
kill and one acquire quest as defined by a4, and S5 where all
arms that have at least one acquire and two kill quests as de-
fined by a5. For all arms in S1, the reward = |a1| = 1; for all
arms in S2, the reward = |a2| = 2; for all arms in S3, the re-
ward = |a3| = 1; for all arms in S4, the reward = |a4| = 2, and
for all arms of S5,the reward = |a5| = 3. In the case where an
arm f(P ′) ̸= f(P ) can be a part of two or more superarms,
f(P ′) is included in the superarm with higher reward.

Lastly, a specific quest proposal P needs to be chosen to
present to the player, since we abstracted the quests from the
arms and superarms. The bandit algorithm selects the next
superarm S using UCB, where S consists of a set of arms
f(P ) at time t. All arms are assumed to be equivalent, so
all arms from within a superarm are selected at random with
equal probability. Let f ′ : τ → q be the inverse function
to f , where f ′ inputs a quest type τ and outputs a quest q.
Since f is many-to-one, f ′ is one-to-many. The AI director
design assumed that all quests are of the same quality, so
the specific quests are randomly selected from all quests of

a given type. To present a set of quests to the player, apply
f ′ to each τ in p, shown in Equation 3.

f ′(f(P )) = {f ′(τ1), f
′(τ2), ...f

′(τk)}
= {q1, q2, ...qk}

(3)

We chose to use an abstraction instead of a naive imple-
mentation of CMAB to reduce the computational complex-
ity, which is necessary due to the computational limitations
of deploying the algorithm live in a video game. A naive ap-
plication of CMAB would assign each quest to be an arm,
and the proposal to be a superarm. Let n be the total num-
ber of quests. |P| =

(
n
k

)
. This results in a large set, where

the size is most affected by n. For example, in Nightingale
there is 101 unique quests, and 3 are shown to the player at
the same time. This would result in |P| =

(
n
k

)
=
(
101
3

)
=

166,650. This is compared to the size of the abstracted set
using quest type, where |f(P )| =

(|T |+k−1
k

)
= 20.

5 Methodology
We conducted a large scale human subject experiment,
which was run within the larger context of an Inflexion
Games playtest. Experiment explicitly refers to the experi-
ment that was designed to evaluate the AI director. Playtest
refers to the wider context, which includes goals outside of
evaluating the AI director.

5.1 Playtest Goals
There were many different aspects of the game that were
simultaneously evaluated during the playtest.

Game Studio Goals Inflexion Games had several high
level studio goals, but there were two that were most rel-
evant to the AI director results: evaluation of studio-level
playtest processes, and an evaluation of the main game loop
to understand how fun the game was.

AI Director Goals The AI director directly supported the
two Inflexion Games goals. First, the AI director was eval-
uated using an AB experiment, and it was the first time the
studio had run an experiment of this type. This helped de-
veloped studio-level playtest processes.

Second, the AI director was used to help evaluate the main
game loop by being directly integrated into the progression.
There were several research questions that were proposed to
help understand how the AI director was affecting the player
experience, but due to space we only discuss the most rele-
vant one: Was the AI director algorithm more satisfying than
a random algorithm? Our hypothesis was that the AI direc-
tor provides a better player experience because it was able
to learn gameplay preference to provide preferred content.

5.2 Experiment Design
To test the AI director, an AB test was conducted, where
players were randomly assigned CMAB or random. Though
a random algorithm can also be considered an AI director,
for the rest of the paper we denote the AI director as the
CMAB algorithm. A random algorithm was chosen for com-
parison because it was considered to be industry standard by



designers at Inflexion Games. To determine the effectiveness
of the AI director, we collected quantitative and qualitative
data. Due to space we will only discuss the data relevant to
answering our research question and evaluating our hypoth-
esis from Section 5.1.2. The quantitative data collected was
as follows: the number of accepted quests, the number of
proposed quests, and the total playtime in minutes.

The number of accepted quests and the number of pro-
posed quests were used to calculate the acceptance rate:
Number of Quests Accepted
Number of Quests Presented . A higher acceptance rate indi-
cates that the player was presented with quests that they were
more likely to accept. Total playtime was used to represent
the overall satisfaction. If a player plays a game for longer,
it could indicate that the player enjoyed the game more.

There are two types of qualitative data that were collected.
The first was an optional exit survey that was prompted
when players quit the game. The second was optional feed-
back data. If players pressed F2 during gameplay, they could
write feedback. This functionality was advertised in pre-
playtest instructions, but was not indicated to players while
they were playing.

The exit survey asked several questions about gameplay
and the overall experience. Due to space, only the six rele-
vant Likert questions are included.
1. I felt like there was a good variety of quests
2. I felt like there were too many repeated quests
3. I felt like I abandoned a lot of quests
4. I felt like I finished most of the quests I accepted
5. It was easy to find quests that I wanted to do
6. It was frustrating to find a quest that I wanted to do.

Questions 1 and 2 allowed us to determine if there was
a satisfying variety of quests being provided to the player.
Questions 3 and 4 allowed us to determine how many quests
the players felt they were completing. Questions 5 and 6 al-
lowed us to determine if players felt like they were able to
find quests that they wanted to complete. These questions
were specifically developed for this experiment.

Friends and family of the developers were invited to play
the game over the course of one weekend. The playtest
started on Friday and closed on Sunday for a total of 52
hours. Developers were allowed to play with their friends
and family during this time. Friends and family players did
not know that the AB test was being conducted, and would
not know unless a developer told them. Additionally, only
developers that were directly involved in implementing the
AB test knew that the test was occurring, so the chance that
developers told other players is low.

6 Results
252 non-developer individuals played the game at least once
during the playtest. Due to space, only results that are rele-
vant to the AI director are included in this paper.

6.1 Playtest Limitations
This was the first playtest of this scale conducted by the stu-
dio, so there were a few technical limitations that affected
the results of the experiment. First, there were errors in as-
signing the algorithm, where some some players switched

Algorithm Median Average Std Dev

AI Director 117.0 211.3 251.0
Random 171.0 262.7 247.4

Table 2: Total playtime (min) by algorithm

between being assigned the AI director algorithm and the
random algorithm. This affected 44 player profiles which
left 208 usable player profiles. 75 profiles were assigned the
AI director algorithm, and 133 profiles were assigned the
random algorithm. Second, there was an inability to connect
the algorithm to most of the qualitative data. From the exit
survey, only 6 AI director profiles and 10 random profiles
were collected. From the feedback, none of the responses
could be connected to type of algorithm they were assigned
in the AB test.

Third, the players were all friends and family of the de-
velopers. There could be biases in how they perceived the
game based on these personal relationships. Fourth, players
were allowed to play the game with developers. This could
have directly impacted results such as playtime, where play-
ers could have a played longer because they wanted to play
with a developer, rather than from enjoyment of the game.
Developers are excluded from all data, but could potentially
affect all collected data.

Last, the game was actively in development. Certain fea-
tures were not developed to their intended level, or were
missing entirely from the game. This directly conflicts with
the assumptions in the AI director design, and is one possi-
ble explanation for our inconclusive results.

6.2 Quantitative Results

Only quantitative data that most strongly relates to the AI
director performance is included in this paper, due to space.
Table 2 shows the median, average and standard deviation
(std dev) of total playtime. The std dev is large due to the
distribution of play times. Most of the players played for
less than 30 minutes, but there was a section of players who
played the game for a significant amount of time.

We used a Mann-Whitney U test / Wilcoxon’s Rank Sum
Test to compare the total time spent in game between the two
different quest algorithms (W = 4076.5, p = 0.02893). The
AI director group was found to have spent less time in game
(AID mean = 211.25 minutes, SD = 250.99) than the random
group (random mean = 262.68 minutes, SD = 247.41).

Table 3 shows the acceptance rate for each algorithm. The
average acceptance rate of the AI director players is 12%,
and the average acceptance rate of the random players is
9%. We used a Mann-Whitney U test / Wilcoxon’s Rank
Sum Test to compare quest acceptance rates between the
two different quest algorithms, which found that there was
no statistically significant difference between the two groups
(AID mean = 0.285, SD = 0.281; random mean = 0.275, SD
= 0.289; W = 5276, p = 0.4891).



Algorithm Harvest Build Craft Kill

AI Director 14% 13% 9% 10%
Random 16% 8% 7% 5%

Table 3: Acceptance rate by algorithm

Strongly
Disagree Disagree Neutral Agree Strongly

Agree

Q1* 2 1 1 1 0
Q2* 0 1 3 0 1
Q3* 0 1 0 4 0
Q4* 1 1 1 0 2
Q5 1 1 2 2 0
Q6 0 1 1 3 1

Table 4: Results from the survey Likert Questions for AI
director players, star (*) indicates that only 5 out of 6 players
responded to this question in the survey

6.3 Qualitative Results
The feedback results are omitted from this section since we
cannot attribute the player’s assigned algorithm with their
feedback, and therefore cannot draw any broad conclusions.

Survey Results Q1-6 refer to the questions 1 through 6
from Section 5.2. The results from the Likert questions for
AI director players are shown in Table 4, and the results
for the random players are shown in Table 5. To compare
the results from the Likert questions, each response was as-
signed a number. Strongly disagree was assigned a 1, and
strongly agree was assigned a 5. We compared the median
value of each question, shown in Table 6. The comparison
shows similar sentiments from both players, which we dis-
cuss further in Section 7.3.

7 Discussion
This was the Inflexion Game’s first time running a playtest
of this scale. As mentioned in Section 6.1, a few crucial data
links failed. From the studio perspective these operational
failures were an opportunity to improve the process for fu-
ture playtests. The main game loop was clearly evaluated to
inform future design. Though the results for the AI director
experiment are inconclusive, the playtest was a success.

Strongly
Disagree Disagree Neutral Agree Strongly

Agree

Q1* 1 1 2 5 0
Q2 1 0 3 6 0

Q3* 1 1 2 2 3
Q4* 1 3 1 4 0
Q5 4 3 2 0 1
Q6 0 1 3 3 3

Table 5: Results from the survey Likert Questions for ran-
dom players, star (*) indicates that only 9 out of 10 players
responded to this question in the survey

Algorithm Q1 Q2 Q3 Q4 Q5 Q6

AI director 2 3 4 3 3 4
Random 3.5 4 4 3 2 4

Table 6: Comparison of the median value for each Likert
question, with 1 being strongly disagree and 5 being strongly
agree

From section 5.2.2, we asked the question “Was the AI di-
rector algorithm more satisfying than a random algorithm ?”.
There are three possible outcomes for this question: that the
AI director provides a better player experience, the random
provides a better player experience, or players perceived
similar player experiences. Because the data does not point
out a single clear answer to this question, we discuss the ev-
idence that supports each outcome.

7.1 AI Director was a Better Player Experience
The results from the acceptance rate support the theory that
the AI director provided a better player experience, shown
in Table 3. Though the Mann-Whitney U test showed that
there was not a statistically significant difference, we still
believe that this shows a slight preference for the AI di-
rector. A higher acceptance rate indicates that that players
were presented with quests that they wanted to do more of-
ten, which indicates that the AI director more successfully
provided quests that players preferred.

7.2 Random was a Better Player Experience
The results from the total playtime support the theory that
the random algorithm was preferred. Both the average and
the median total play time are longer for the random play-
ers, and the Mann-Whitney U test confirmed that this is a
statistically significant difference. We provide two possible
explanations for these results.

The first explanation is due to the type of reward schedule
each algorithm provides. Assume that a player is rewarded
when they find a quest they prefer. The AI director attempted
to provide consistent reward, where every time the player in-
teracted with the job board they would see quests they pre-
ferred. The random algorithm provided an intermittent re-
ward schedule (Cameron and Pierce 1994), where players
only found quests they preferred some of the time. Intermit-
tent reward schedules are known to be powerful motivators,
which could have provided a better player experience (Luo,
Yang, and Meinel 2015; Griffiths 2010).

The second explanation is a mismatch between the as-
sumptions of the AI director and the actual game that was
being played. The AI director was designed with the final
version of the game in mind, rather than the version of the
game in the playtest. The AI director assumed that all game-
play types were equally developed and fun, such that the
players would be able to clearly identify the type of game-
play they prefer. In reality, the kill and craft loops were
underdeveloped, and the harvest quests were the easiest to
complete. This made it harder for players to determine the
parts of the game they enjoyed. Since players might not have



had any gameplay preference, randomly providing quests
to players could have provided consistent variety and could
have created a satisfying player experience.

7.3 Players Perceived Similar Player Experiences
Due to playtest limitations, it is possible that players per-
ceived a significant difference between each type of algo-
rithm, but the data was unable to capture the difference. An-
other possibility is that players had different player experi-
ences, but they were not different enough to be significant.
We explore the second possibility here.

In the limited qualitative data, the results indicate that the
AI director and random players perceived similar player ex-
periences. Many of the Likert questions have the same me-
dian value for both algorithms. One explanation for the simi-
larity is due to a negative experience from playing the game.
Players felt like the game loop needed work. One player
was frustrated enough to submit optional feedback, saying
“I am very much not a fan of the current gameplay loop... I
have to port back to [the city], go through a loading screen,
fast travel, get a new research, and then port BACK to [the
canonical realm] just to cash in the quests...”

Players’ frustration levels from playing the game may
have affected the survey results. Players had trouble divorc-
ing their frustrated experience of trying to complete quests
from the experience of accepting quests. In particular, Lik-
ert question 6 “It was frustrating to find a quest that I wanted
to do”, had the same median value of 4 for both AI director
and random players, which corresponds to the answer agree.
There could have been differing amounts of frustration ex-
perienced by players, where AI director or random players
could have had a more or less negative experience. However,
the Likert results do not show any significant differences.

8 Takeaways as an Academic Working with
Inflexion Games

In addition to the lessons learned from the results of the ex-
periment, there are important takeaways we learned from
working closely with an industry partner.

8.1 Finding the Right Industry Partner
Video game development is an extremely expensive endeav-
our, which makes studios that are interested in untested tech-
nology rare to find. We were lucky to have an industry part-
ner who sees the value of providing a space for academic
research despite the risks.

Inflexion Games was willing to invest over a years worth
of development resources in order to design and implement
the AI director in their game. They also saw the potential of
the AI director to be a powerful influence on the player expe-
rience, and decided to showcase it as a part of the main game
loop, instead of as an optional part of the game. This shows
their incredible support for the technology, and also their
willingness to experiment and take risks in order to provide
a better player experience. We were extremely lucky to have
an industry partner put their faith in both the research and
the academic who implemented the research in the game.

8.2 Research in an Actively Developing Game
To include research like this AI director in a game, it needs to
be proposed while the game is being developed. The systems
that the research should interact with need to be engineered
so that they are compatible with the chosen algorithm. Addi-
tionally, it does not make sense to propose a potential AI di-
rector near the end of a game’s development, because many
of these systems will already have been engineered in a po-
tentially incompatible way.

Designers at Inflexion Games proposed an AI director,
which meant they knew the proper time to include it in the
development cycle. This was proposed over a year before
the playtest. The AI director was included at an early stage
in the development cycle such that the quest system could be
designed to accommodate the CMAB algorithm. However,
this was about a year and a half into the development of the
game, so gameplay and a core loop were semi-established.
A game does not need to originally propose an AI director to
include one, but if the game is too far along its development
cycle, it can be difficult to make the necessary changes.

8.3 Evaluating Research on an Industry Timeline
Within industry, it is common practice for studios to run
playtests in order to evaluate different parts of their game.
Playtests provide an opportune time to run experiments for
academic research, and provide a natural way for the needs
of academic research to align with the needs of the com-
pany. Studios schedule these playtests in a way that works
best for them, and is dependent on the development state of
the game. If the game is not ready for outside players, the
playtest can easily be moved to a later date. This flexibility
makes it difficult to schedule with research deadlines such
as conferences or degrees.

For example, the playtest that was ultimately run in 2021
was originally scheduled in 2020, and the playtest was
moved several times. The shifting nature of these playtests,
and additional uncertainty of when the next playtest might
be, makes a collaboration like this impractical for individu-
als who are on a tight academic timeline.

9 Conclusion
We partnered with Inflexion Games in order to develop an
AI director to suit the needs of their game Nightingale. We
ran an experiment to compare how the AI director performed
against a random algorithm, and the results were inconclu-
sive. Some results indicated that the AI director was pre-
ferred, other results indicated that the random algorithm was
preferred, and other results indicated that players did not per-
ceive a difference in the experience. To help others interested
in similar industry collaborations, we provided insight into
the practical limitations of working closely with industry.
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M. Y.; Weikum, G.; Göbel, S.; Malkewitz, R.; and Iurgel,
I., eds., Technologies for Interactive Digital Storytelling and
Entertainment, volume 4326, 253–264. Berlin, Heidelberg:
Springer Berlin Heidelberg. ISBN 978-3-540-49934-3 978-
3-540-49935-0. Series Title: Lecture Notes in Computer
Science.
Valve. 2008. Left 4 Dead. PC, XBox 360.
Yu, H.; and Riedl, M. O. 2013. Data-Driven Personalized
Drama Management. In Proceedings of the Ninth AAAI Con-
ference on Artificial Intelligence and Interactive Digital En-
tertainment, 191–197.
Yu, K. K.; Guzdial, M.; and Sturtevant, N. R. 2021. Towards
Disambiguating Quests as a Technical Term. In ”Proceed-
ings of the Sixteenth International Conference on the Foun-
dations of Digital Games (FDG)”. ACM.
Yu, K. K.; Sturtevant, N. R.; and Guzdial, M. 2020. What is
a Quest? In Intelligent Narrative Technologies Workshop.


